direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×M4(2).8C22, M4(2).23C23, (C2×C4).3C24, C24.35(C2×C4), (C23×C4).24C4, (C22×D4).37C4, C4.133(C22×D4), (C22×C4).777D4, (C2×D4).354C23, C4.D4⋊18C22, C22.16(C23×C4), C23.60(C22×C4), (C2×Q8).327C23, C4.10D4⋊19C22, (C2×M4(2))⋊67C22, (C22×M4(2))⋊17C2, (C22×C4).897C23, (C23×C4).511C22, C23.129(C22⋊C4), (C22×D4).549C22, (C22×Q8).453C22, C4○(M4(2).8C22), C4○(C2×C4.D4), C4○(C2×C4.10D4), (C2×C4○D4).24C4, (C2×C4)○(C4.D4), (C2×D4).223(C2×C4), (C2×C4)○(C4.10D4), (C2×C4.D4)⋊29C2, (C2×C4).1401(C2×D4), C4.120(C2×C22⋊C4), (C22×C4).88(C2×C4), (C2×Q8).201(C2×C4), (C2×C4.10D4)⋊29C2, (C2×C4).108(C22×C4), (C22×C4○D4).17C2, C2.30(C22×C22⋊C4), C22.19(C2×C22⋊C4), (C2×C4).281(C22⋊C4), (C2×C4○D4).271C22, (C2×C4)○(C2×C4.D4), SmallGroup(128,1619)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 636 in 378 conjugacy classes, 172 normal (18 characteristic)
C1, C2, C2 [×2], C2 [×10], C4 [×8], C4 [×4], C22 [×3], C22 [×4], C22 [×26], C8 [×8], C2×C4 [×4], C2×C4 [×28], C2×C4 [×20], D4 [×24], Q8 [×8], C23, C23 [×10], C23 [×10], C2×C8 [×12], M4(2) [×8], M4(2) [×12], C22×C4 [×2], C22×C4 [×22], C22×C4 [×8], C2×D4 [×12], C2×D4 [×12], C2×Q8 [×4], C2×Q8 [×4], C4○D4 [×32], C24, C24 [×2], C4.D4 [×8], C4.10D4 [×8], C22×C8 [×2], C2×M4(2) [×12], C2×M4(2) [×6], C23×C4, C23×C4 [×2], C22×D4, C22×D4 [×2], C22×Q8, C2×C4○D4 [×8], C2×C4○D4 [×8], C2×C4.D4 [×2], C2×C4.10D4 [×2], M4(2).8C22 [×8], C22×M4(2) [×2], C22×C4○D4, C2×M4(2).8C22
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×8], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C24, C2×C22⋊C4 [×12], C23×C4, C22×D4 [×2], M4(2).8C22 [×2], C22×C22⋊C4, C2×M4(2).8C22
Generators and relations
G = < a,b,c,d,e | a2=b8=c2=d2=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b5, dbd=bc, cd=dc, ece-1=b4c, ede-1=b4cd >
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 15)(3 12)(4 9)(5 14)(6 11)(7 16)(8 13)(17 25)(18 30)(19 27)(20 32)(21 29)(22 26)(23 31)(24 28)
(1 31)(2 20)(3 29)(4 18)(5 27)(6 24)(7 25)(8 22)(9 30)(10 23)(11 28)(12 21)(13 26)(14 19)(15 32)(16 17)
(1 8 3 2 5 4 7 6)(9 12 11 14 13 16 15 10)(17 20 19 22 21 24 23 18)(25 28 27 30 29 32 31 26)
G:=sub<Sym(32)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28), (1,31)(2,20)(3,29)(4,18)(5,27)(6,24)(7,25)(8,22)(9,30)(10,23)(11,28)(12,21)(13,26)(14,19)(15,32)(16,17), (1,8,3,2,5,4,7,6)(9,12,11,14,13,16,15,10)(17,20,19,22,21,24,23,18)(25,28,27,30,29,32,31,26)>;
G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28), (1,31)(2,20)(3,29)(4,18)(5,27)(6,24)(7,25)(8,22)(9,30)(10,23)(11,28)(12,21)(13,26)(14,19)(15,32)(16,17), (1,8,3,2,5,4,7,6)(9,12,11,14,13,16,15,10)(17,20,19,22,21,24,23,18)(25,28,27,30,29,32,31,26) );
G=PermutationGroup([(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,15),(3,12),(4,9),(5,14),(6,11),(7,16),(8,13),(17,25),(18,30),(19,27),(20,32),(21,29),(22,26),(23,31),(24,28)], [(1,31),(2,20),(3,29),(4,18),(5,27),(6,24),(7,25),(8,22),(9,30),(10,23),(11,28),(12,21),(13,26),(14,19),(15,32),(16,17)], [(1,8,3,2,5,4,7,6),(9,12,11,14,13,16,15,10),(17,20,19,22,21,24,23,18),(25,28,27,30,29,32,31,26)])
Matrix representation ►G ⊆ GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 13 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 4 | 1 | 16 | 8 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 6 | 11 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 13 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 4 | 13 | 15 |
0 | 0 | 0 | 1 | 16 | 4 |
0 | 13 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 1 | 13 | 4 | 2 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 11 | 11 | 0 | 4 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,4,1,6,0,0,0,1,0,11,0,0,13,16,0,0,0,0,0,8,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,16,0,13,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,16,0,0,0,16,0,4,1,0,0,0,0,13,16,0,0,0,0,15,4],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,1,4,11,0,0,0,13,0,11,0,0,16,4,0,0,0,0,0,2,0,4] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | 4L | 4M | 4N | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | M4(2).8C22 |
kernel | C2×M4(2).8C22 | C2×C4.D4 | C2×C4.10D4 | M4(2).8C22 | C22×M4(2) | C22×C4○D4 | C23×C4 | C22×D4 | C2×C4○D4 | C22×C4 | C2 |
# reps | 1 | 2 | 2 | 8 | 2 | 1 | 4 | 4 | 8 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_2\times M_{4(2)}._8C_2^2
% in TeX
G:=Group("C2xM4(2).8C2^2");
// GroupNames label
G:=SmallGroup(128,1619);
// by ID
G=gap.SmallGroup(128,1619);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,352,2804,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^2=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^5,d*b*d=b*c,c*d=d*c,e*c*e^-1=b^4*c,e*d*e^-1=b^4*c*d>;
// generators/relations